Teachor's copy

P510/1

PHYSICS

Paper 1

2 Hours 30 Minutes

August 2019

TORORO ARCHDIOCESE EXAMINATIONS BOARD

Uganda Advanced Certificate of Education MOCK EXAMINATIONS PHYSICS

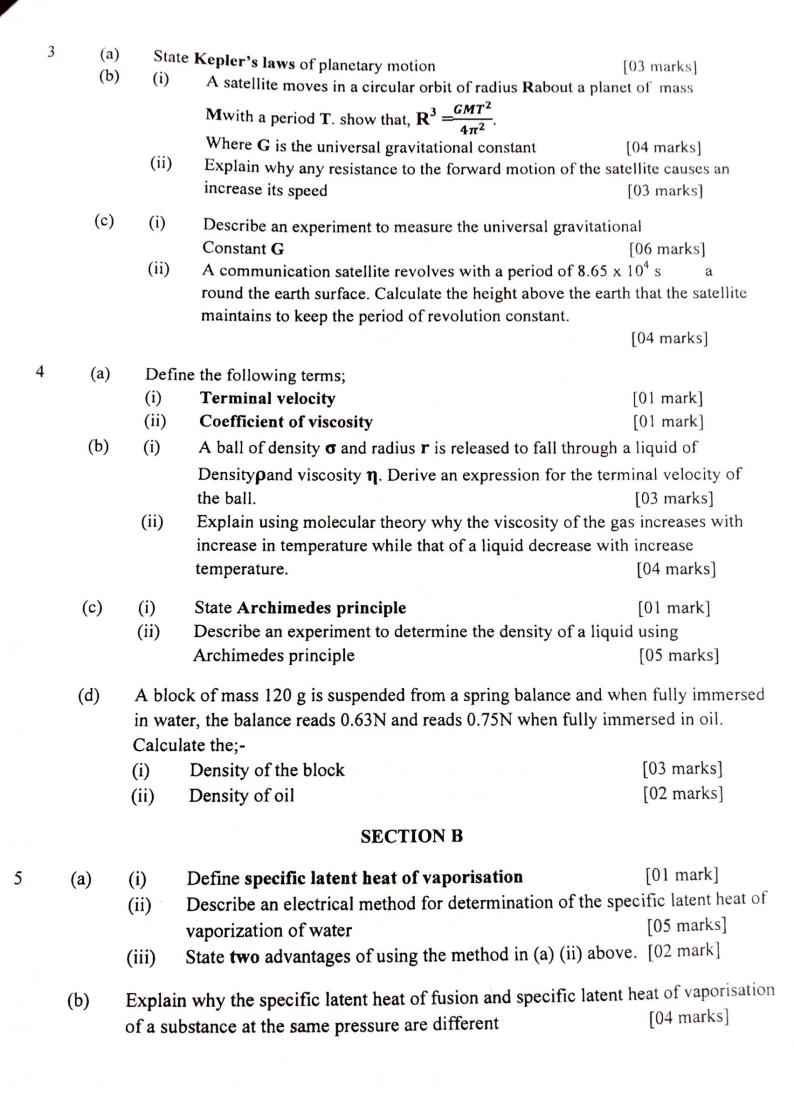
Paper 1 2 Hours 30 Minutes

INSTRUCTIONS TO CANDIDATES

Answer five questions including at least one but not more than two from each of the sections A, B and C.

Non – programmable scientific calculators may be used. Assume where necessary;

Assume	where	necessary.
--------	-------	------------


Acceleration due to gravity	g	=	9.81 ms ⁻²
Electron charge	e	=	1.60 x 10 ⁻¹⁹ C
Electron mass	m	=	9.11 x 10 ⁻³¹ kg
Mass of the earth		=	$5.97 \times 10^{24} \text{ kg}$
Plank's constant	h		$6.6 \times 10^{-34} \text{ Js}$
Stefan Boltzmann's constant	σ	=	$5.67 \times 10^{-8} \text{Wm}^{-2} \text{k}^{-4}$
Radius of the earth		=	$6.4 \times 10^6 \text{m}$
Speed of light in a vacuum	С		3.0 x 108ms ⁻¹
Surface tension of water	γ		$7.0 \times 10^{-2} \text{ Nm}^{-1}$
Charge to mass ratio	$\frac{e}{m}$	= 61 11 21	1.8 x10 ¹¹ Ckg ⁻¹
Universal gravitational constant G		= " 0 0 111	$6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$
Specific heat capacity of water			4200 Jkg ⁻¹ K ⁻¹
Avogadro's number	N	+	$6.02 \times 10^{23} \text{mol}^{-1}$
Gas constant	R	+	8.31 Jmol ⁻¹ K ⁻¹
Specific heat capacity of ice		=	$3.30 \times 10^5 \text{ Jkg}^{-1}\text{K}^{-1}$
The constant	$\frac{1}{4\pi\varepsilon_0}$	=	$9.0 \times 10^9 \text{F}^{-1} \text{m}$

© 2019 TAEB

SECTION A

1	(a)		[01 mark] [01 mark]
	(b)	A ball is thrown vertically upwards, moves to the maximum height a level of projection.	and returns to the
		(ii) P. 1: 1	01 mark] 02 marks]
		(ii) Explain why the acceleration due to gravity at the equator is	01 mark] less than that at 02 marks]
(e	(i (i	Newton's laws of motion	01 mark] 03 mark]
(0	-	car of mass 2000 kg, travelling at 10ms ⁻¹ on a horizontal surface is a distance of 12.5m by the action of the brakes	s brought to rest
	Ca (i) (ii)	Power that must be developed by the engine to take the car up 1 in 10 at a constant speed of 10 ms ⁻¹ against friction resistance.	04 marks] the incline of ce of 200 N 04 marks]
(a)	(i) (ii)	State the principle of conservation of linear momentum [One of the conservation of the conservation of linear momentum [One of the conservation of the conservatio	01 mark] collision
(b)	A b	unet of mass 20 g is fired horizontally into a suspended stationary nass 500 g with a velocity of 200 ms ⁻¹	
	(i) (ii)	State the factors upon which the angle of swing 0depends [Calculate the common velocity of the bullet and the block if t is embedded in the block.	01 mark] he bullet 03 marks]
(c)	(i) (ii) (iii)	Using molecular theory, explain the origin of solid friction [ODescribe an experiment to determine the coefficient of kinetic	friction
(d)	(i)	Dietin sui-1 1	04 marks] 02 marks]
	(ii)	Derive an expression for the energy stored per unit volume of wire in terms of stress and strain	a stretched marks]

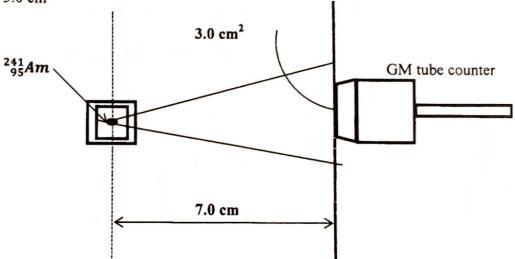
2

- (c) When water was passed through a continuous flow calorimeter, the rise in temperature was from 16.0°C to 20.0°C, the mass of water flowing was 100 g in one minute, the potential difference across the heating coil was 20.0V and the current was 1.5A. Another liquid at 16.0°C was then passed through the calorimeter and got the same change in temperature and potential difference was 13.0V, the current was 1.2A and the rate of flow of 120 g in one minute. Calculate the specific heat capacity of the liquid.
- Using the expression for the kinetic pressure of an ideal gas, deduce the ideal gas equation if $\frac{1}{2}mc^{-2} = \frac{3}{2}k_B$ T [03 marks]
- 6 (a) (i) Define **Thermal conductivity** [01 mark] (ii) Explain the mechanism of heat transfer in metals [03 marks]
 - (b) A copper kettle containing 1.00 kg of water has a base of thickness 2.0 mm and area $3.0 \times 10^{-2} \text{m}^2$. Calculate the;-
 - (i) Steady temperature difference between the inner and outer and outer surfaces of the base which must be maintained so that the temperature of the water rises at a rate of 0.25Ks⁻¹ [03 marks]
 - (ii) Specific latent heat of vaporization of water, if its allowed to boil under the same conditions for 120s and the mass of water remaining is 0.94 Kg

 [03 marks]
 - (c) (i) Describe an experiment to determine the thermal conductivity of a piece of rubber. [06 marks]
 - (ii) Define a perfect black body [01 mark]
 - (d) Using the same axes, sketch graphs to show the distribution of energy in the spectrum of radiation from a black body at three different temperatures

[03 marks]

- 7 (a) Distinguish between saturated vapour and unsaturated vapour [02 marks]
 - (b) (i) With the aid of a labelled diagram, describe an experiment to determine the saturated vapour pressure of a liquid at a particular temperature. [05 marks]
 - (ii) Explain the effect of increasing temperature on the pressure of the gas [03 marks]
 - (c) (i) Derive an expression for the difference in molar heat capacities of an ideal gas [04 marks]
 - (ii) Account for the difference in the molar heat capacities for a fixed mass of gas [02 marks]


A gas of volume 2 litres at a temperature of 300K and a pressure of 1.5 x 10^5 Pa is heated to a temperature of 325K at a constant pressure until its volume doubles. It is the cooled at constant volume back to its original temperature before finally being compressed isothermally to its original volume. (i) Draw P-V diagram to describe the whole cycle (ii) [02 marks] Calculate the pressure of the gas after cooling at constant volume to its original temperature [02 marks] SECTION C (a) Define the following; (i) Nuclide [01 mark] (ii) **Nucleons** [01 mark] (b) Distinguish between nuclear fission and nuclear fission (i) [02 marks] State the conditions necessary for nuclear fusion to take place (ii) [02 mark] (c) Sketch the graph of binding energy per nucleon against mass number and indicate the position of the most stable nuclide [04 marks] The deuterium - trillium fusion reaction that can take place in a thermonuclear (d) fusion reactor is as shown $_{1}^{2}H + _{1}^{3}H \longrightarrow _{2}^{4}He + _{0}^{1}n + \text{energy}.$ Taking; Mass of ${}_{1}^{2}H =$ 2.0141 U Mass of ${}_{1}^{3}H =$ 3.0161 U Mass of ${}^{4}He =$ 4.0026 U Mass of $\frac{1}{0}n =$ 1.0087 U 1 U = 931 MeVCalculate the;-[05 marks] Amount of energy released in the reaction (i) Kinetic energy needed to overcome coulomb's repulsion, assume radius of (ii) deuterium and trillium to be 1.50 x 10⁻¹⁵ m each [05 marks] Define the following; (a) [01 mark] Photoelectric emission (i) [01 mark] Threshold frequency (ii) With the aid of a diagram, describe an experiment to demonstrate (b) (i) [04 marks] photoelectric emission Describe an experiment to measure the stopping potential of a given surface (ii) [05 marks] [01 mark] What is meant by a photon? (i) (c)

(d)

8

9

- (b) (i) With the aid of a diagram, describe the structure and operation of an ionisation chamber [06 marks]
 - (ii) Sketch a graph of ionisation current verses operating P.D and explain the features of the graph [04 marks]
- (c) Figure 1 shows a point source of alpha particles as a tiny mass of the nuclide ²⁴¹/₉₅Am Mounted 7.0 cm in front of a GM tube whose mica window has a reception area of 3.0 cm²

The counter linked to the GM tube records 5.40×10^4 counts per minute. Calculate the;-

- (i) Number of disintegrations per second with in the source [04 marks]
- (ii) Number of ²⁴¹/₉₅Am atoms with the source [03 marks]

[The decay constant λ , for $^{241}_{95}Am = 4.80 \times 10^{-11}$ per second]

END